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INTRODUCTION 
 

Concatenating two or more strings together while developing a C++ application is a very 
common task.  CStrings provide two operators for concatenating strings.  The first method is to use 
the += operator, and the second is to use the + operator.  This report will analyze and compare the 
two operations. 
      

In another report on appending std::strings together, it was found that it was more efficient to 
use the += operator instead of the + operator (ref. 1).  This then led to the question of whether the 
CString class operated the same.  It turns out that the CString performs about the same for both 
operators when only dealing with about 3 to 4 strings.  Once there are more strings, then the += 
operator starts to outperform the + operator. 

 
 

METHODOLOGY 
 

In order to acquire data for this report, the following program was written, which would 
concatenate a certain number of strings using the += operator and also concatenate the same 
strings using the + operator.  I collected data for concatenating 2 to 10 strings.  The source code for 
this program is shown on the following pages: 

 
int _tmain(int argc, TCHAR* argv[], TCHAR* envp[]) 
{ 
  int nRetCode = 0; 
 
  HMODULE hModule = ::GetModuleHandle(NULL); 
 
  if(hModule != NULL) 
  { 
    // initialize MFC and print and error on failure 
    if(!AfxWinInit(hModule, NULL, ::GetCommandLine(), 0)) 
    { 
      // TODO: change error code to suit your needs 
      _tprintf(_T("Fatal Error: MFC initialization failed\n")); 
      nRetCode = 1; 
    } 
    else 
    { 
      LARGE_INTEGER frequency; 
      QueryPerformanceFrequency(&frequency); 
 
      LARGE_INTEGER starting_time, ending_time, elapsed_microseconds; 
 
      //std::ofstream a_file("outfile2.txt"); 
      //std::ofstream a_file("outfile3.txt"); 
      //std::ofstream a_file("outfile4.txt"); 
      //std::ofstream a_file("outfile5.txt"); 
      //std::ofstream a_file("outfile6.txt"); 
      //std::ofstream a_file("outfile7.txt"); 
      //std::ofstream a_file("outfile8.txt"); 
      //std::ofstream a_file("outfile9.txt"); 
      std::ofstream a_file("outfile9.txt"); 
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      //setup strings here 
      std::vector<CString> my_strings; 
      my_strings.push_back(_T("This is the first.")); 
      my_strings.push_back(_T("This is the second.")); 
      my_strings.push_back(_T("This is the third.")); 
      my_strings.push_back(_T("This is the fourth.")); 
      my_strings.push_back(_T("This is the fifth.")); 
      my_strings.push_back(_T("This is the sixth.")); 
      my_strings.push_back(_T("This is the seventh.")); 
      my_strings.push_back(_T("This is the eighth.")); 
      my_strings.push_back(_T("This is the nineth.")); 
      my_strings.push_back(_T("This is the tenth.")); 
 
      CString plus_equal; 
      CString plus_plus; 
 
      for(auto i = 0u; i < 10; ++i) 
      { 
        plus_equal = _T(""); 
        QueryPerformanceCounter(&starting_time); 
 
        //code to measure here 
        plus_equal = my_strings[0]; 
        plus_equal += my_strings[1]; 
        plus_equal += my_strings[2]; 
        plus_equal += my_strings[3]; 
        plus_equal += my_strings[4]; 
        plus_equal += my_strings[5]; 
        plus_equal += my_strings[6]; 
        plus_equal += my_strings[7]; 
        plus_equal += my_strings[8]; 
        plus_equal += my_strings[9]; 
 
        QueryPerformanceCounter(&ending_time); 
        elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart; 
 
        //this time is in micro seconds 
        auto te_plus_equal = static_cast<double>((elapsed_microseconds.QuadPart * 
1000000.0) / frequency.QuadPart); 
 
 
        plus_plus = _T(""); 
        QueryPerformanceCounter(&starting_time); 
 
        //code to measure here 
        //plus_plus = my_strings[0] + my_strings[1]; 
        //plus_plus = my_strings[0] + my_strings[1] + my_strings[2]; 
        //plus_plus = my_strings[0] + my_strings[1] + my_strings[2] + my_strings[3]; 
        //plus_plus = my_strings[0] + my_strings[1] + my_strings[2] + my_strings[3] + 
my_strings[4]; 
        //plus_plus = my_strings[0] + my_strings[1] + my_strings[2] + my_strings[3] + 
my_strings[4] + my_strings[5]; 
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        //plus_plus = my_strings[0] + my_strings[1] + my_strings[2] + my_strings[3] + 
my_strings[4] + my_strings[5] + my_strings[6]; 
        //plus_plus = my_strings[0] + my_strings[1] + my_strings[2] + my_strings[3] + 
my_strings[4] + my_strings[5] + my_strings[6] + my_strings[7]; 
        //plus_plus = my_strings[0] + my_strings[1] + my_strings[2] + my_strings[3] + 
my_strings[4] + my_strings[5] + my_strings[6] + my_strings[7] + my_strings[8]; 
        plus_plus = my_strings[0] + my_strings[1] + my_strings[2] + my_strings[3] + 
my_strings[4] + my_strings[5] + my_strings[6] + my_strings[7] + my_strings[8] + 
my_strings[9]; 
 
        QueryPerformanceCounter(&ending_time); 
        elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart; 
 
        //this time is in micro seconds 
        auto te_plus_plus = static_cast<double>((elapsed_microseconds.QuadPart * 
1000000.0) / frequency.QuadPart); 
 
 
        a_file << te_plus_equal << "," << te_plus_plus << "\r\n"; 
 
 
        printf("Run: %d \t\tte plus equal: %4.2f \t\tte plus plus: %4.2f\r\n", i + 1, te_plus_equal, 
te_plus_plus); 
      } 
 
      a_file.close(); 
 
      printf("All done!\n"); 
 
      //this stops the program in order to see data; 
      getchar(); 
    } 
  } 
  else 
  { 
    // TODO: change error code to suit your needs 
    _tprintf(_T("Fatal Error: GetModuleHandle failed\n")); 
    nRetCode = 1; 
  } 
 
  return nRetCode; 
} 
 

The code is very straightforward.  Sections need to be commented out depending on the 
results that are desired.  The built in high resolution counters are used in order to measure how long 
the concatenation took.  The results are logged to the output file for later processing. 

 
After running this program for each of the results desired, the results are shown in figure 1.  
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Figure 1 
CString concatenate 

Figure 1 shows that for only a few CStrings, there was a negligible effect on performance. 
Once there was about four CStrings, there was a noticeable difference starting to emerge. As with 
the std::string, one would tend to use the+= instead of the+ operator. 

Let's take a look at the compiler generated assembly code in order to get a better idea why 
the measured results were received. For appending three CStrings, the assembly code is as follows: 

plus_equal = my_strings[O]; 
OOEEEOOG push 0 
OOEEE008 lea ecx,(ebp-128h) 
OOEEEOOE call 
std: :vector<ATL: :CString T <wchar _t,Str TraitMFC _DLL <wchar _t,A TL: :Ch T raitsCRT <wchar _t> > 
>,std::allocator<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL: :ChTraitsCRT<wchar_t> > 
> > >::operatorO (OEE1258h) 
OOEEE013 mov esi,esp 
OOEEE015 push eax 
OOEEE016 lea ecx,(ebp-134h) 
OOEEEO 1 C call dword ptr ds: (OF0541 Ch] 
OOEEE022 cmp esi,esp 
OOEEE024 call _RTC_CheckEsp (OEE1843h) 

plus_equal += my_strings[1]; 
OOEEE029 push 1 
OOEEE02B lea ecx,(ebp-128h] 
OOEEE031 call 
std::vector<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> > 
>,std::allocator<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> > 
> > >::operatorO (OEE1258h) 
OOEEE036 mov esi,esp 
OOEEE038 push eax 
OOEEE039 lea ecx,(ebp-134h) 
OOEEE03F call dword ptr ds:[OF05420h] 
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00EEE045  cmp         esi,esp   
00EEE047  call        __RTC_CheckEsp (0EE1843h)   
        plus_equal += my_strings[2]; 
00EEE04C  push        2   
00EEE04E  lea         ecx,[ebp-128h]   
00EEE054  call        
std::vector<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> > 
>,std::allocator<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> > 
> > >::operator[] (0EE1258h)   
00EEE059  mov         esi,esp   
00EEE05B  push        eax   
00EEE05C  lea         ecx,[ebp-134h]   
00EEE062  call        dword ptr ds:[0F05420h]   
00EEE068  cmp         esi,esp   
00EEE06A  call        __RTC_CheckEsp (0EE1843h) 
27 instructions 
 
plus_plus = my_strings[0] + my_strings[1] + my_strings[2]; 
00E6E0FB  push        2   
00E6E0FD  lea         ecx,[ebp-128h]   
00E6E103  call        
std::vector<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> > 
>,std::allocator<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> > 
> > >::operator[] (0E61258h)   
00E6E108  push        eax   
00E6E109  push        1   
00E6E10B  lea         ecx,[ebp-128h]   
00E6E111  call        
std::vector<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> > 
>,std::allocator<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> > 
> > >::operator[] (0E61258h)   
00E6E116  push        eax   
00E6E117  push        0   
00E6E119  lea         ecx,[ebp-128h]   
00E6E11F  call        
std::vector<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> > 
>,std::allocator<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> > 
> > >::operator[] (0E61258h)   
00E6E124  push        eax   
00E6E125  lea         eax,[ebp-244h]   
00E6E12B  push        eax   
00E6E12C  call        ATL::operator+ (0E61B72h)   
00E6E131  add         esp,0Ch   
00E6E134  mov         dword ptr [ebp-2C4h],eax   
00E6E13A  mov         ecx,dword ptr [ebp-2C4h]   
00E6E140  mov         dword ptr [ebp-2C8h],ecx   
00E6E146  mov         byte ptr [ebp-4],0Eh   
00E6E14A  mov         edx,dword ptr [ebp-2C8h]   
00E6E150  push        edx   
00E6E151  lea         eax,[ebp-238h]   
00E6E157  push        eax   
00E6E158  call        ATL::operator+ (0E61B72h)   
00E6E15D  add         esp,0Ch   
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00E6E160  mov         dword ptr [ebp-2CCh],eax   
00E6E166  mov         ecx,dword ptr [ebp-2CCh]   
00E6E16C  mov         dword ptr [ebp-2D0h],ecx   
00E6E172  mov         byte ptr [ebp-4],0Fh   
00E6E176  mov         esi,esp   
00E6E178  mov         edx,dword ptr [ebp-2D0h]   
00E6E17E  push        edx   
00E6E17F  lea         ecx,[ebp-140h]   
00E6E185  call        dword ptr ds:[0E8541Ch]   
00E6E18B  cmp         esi,esp   
00E6E18D  call        __RTC_CheckEsp (0E61843h)   
00E6E192  mov         byte ptr [ebp-4],0Eh   
00E6E196  mov         esi,esp   
00E6E198  lea         ecx,[ebp-238h]   
00E6E19E  call        dword ptr ds:[0E85418h]   
00E6E1A4  cmp         esi,esp   
00E6E1A6  call        __RTC_CheckEsp (0E61843h)   
00E6E1AB  mov         byte ptr [ebp-4],0Dh   
00E6E1AF  mov         esi,esp   
00E6E1B1  lea         ecx,[ebp-244h]   
00E6E1B7  call        dword ptr ds:[0E85418h]   
00E6E1BD  cmp         esi,esp   
00E6E1BF  call        __RTC_CheckEsp (0E61843h) 
49 instructions 
 

The += concatenate created 27 lines of machine code versus the 49 lines of machine code 
generated by the + operator.  So just by the number of instructions created, it can be seen that the  
+ operator will take longer.  Looking deeper into the assembly, one can see that the + operator is 
returning a new buffer for each +, whereas the += operator is doing an actual concatenation on the 
current CString. 
 
 

CONCLUSIONS 
 

It’s very important for a developer to understand the complexities of writing code in one way 
versus another.  This report shows that the more efficient way to concatenate CStrings is to use the 
+= operator.  Although the performance is not very different when only a few strings are involved, it 
would be better to just always use the more efficient version. 



UNCLASSIFIED 

Approved for public release; distribution is unlimited. 

7 

REFERENCES 
 

1. Nealis, T., “std::string Append,” Technical Report ARMET-TR-14026, U.S. Army ARDEC, 
Picatinny Arsenal, NJ 07806, In press. 

 



 

 



UNCLASSIFIED 

Approved for public release; distribution is unlimited. 

9 

DISTRIBUTION LIST 
 
U.S. Army ARDEC 
ATTN: RDAR-EIK 
 RDAR-WSF-M, T. Nealis 
Picatinny Arsenal, NJ  07806-5000 
 
Defense Technical Information Center (DTIC) 
ATTN: Accessions Division   
8725 John J. Kingman Road, Ste 0944   
Fort Belvoir, VA  22060-6218 
 
GIDEP Operations Center              
P.O. Box 8000 
Corona, CA  91718-8000 
gidep@gidep.org 
 



LCSD A9 SUJ 

UNCLASSIFIED 

Patricia Alameda 

Patricia Alameda 

Andrew Pskowski 

Approved for public release; distribution is unlimited. 
10 


